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ABSTRACT
The waveguide mode tropospheric propagation effect prediction program, M-

Layer, originally written by Naval Command Control and Ocean Surveillance Center,
Research, Development, Test and Engineering Division (NRaD), is revised for
greater accuracy, speed and stability. The accuracy improvement is achieved first by
converting the extended complex number representation into the representation by
the complex exponent then by re-writing the group of Airy function computation
subroutines. This accuracy improvement makes it possible to implement a self-
checking procedure for determining the proper method to evaluate the height gain
function. Finally, a new mode locating algorithm is introduced which improves the
efficiency of mode search and eliminates the looping problem observed. The revision
has been documented and the new program source code has been delivered to
NRaD. It is also recommended that the mode search protocol, not just the mode
locating algorithm introduced in this revision, be completely revised for better

performance.
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I. INTRODUCTION

M-Layer is a FORTRAN program for computing the propagation factor of an
electromagnetic (EM) wave in a stratified atmosphere. It is desirable to extend the
capability of this program to include a layer of random medium representing the air-
ocean interface. To achieve this goal, there are many basic theoretical problems
which have to be answered. First of all, the effect of the earth curvature in this
program is taken care of through the classical earth-flattening approximation [Ref. 1],
but the result [Ref. 2] does not agree with the more recent diffraction theory of Fock
[Ref. 3] near the surface of the earth. Then there is the question about the better
method to model the atmospheric refractive index profile, either piecewise linear or
quadratic, to be resolved by a new earth-flattening approximation under development
at NPS. The new approximation will also determine the functions to be used for the
representation of the EM fields in each layer through uniform asymptotic theories.
Within some proper region, these new functions are expected to reduce to the Airy
functions utilized by M-Layer. The evolutionary nature of this effort prompted this
review to improve the inner workings of the M-Layer program. In particular, the
subroutines to search for the modes and those for evaluating the Airy functions will
remain as an important part of a program investigating questions about EM wave

propagation by solving the related boundary value problem.




It can never be overemphasized that a boundary value problem which includes
a layer of random medium or some range dependent inhomogeneity, set up according
to the Maxwell equations, will include backscattering in its solution. This is in sharp
contrast to those numerical procedures based on the parabolic approximation to the
wave equation for which the backscattering is completely ignored.

In what follows, the M-Layer program and the reasons for replacing the
extended complex numbers with their complex exponent representations are
discussed, together with some other problems encountered and resolved during this

investigation.

A. M-LAYER

In M-Layer, the index of refraction of the atmosphere is assumed to be height
dependent and is approximated with a continuous piecewise linear profile. The
classical earth-flattening approximation is utilized to allow the use of the cylindrical
coordinate system while retaining the effect of the curvature of the earth. This is
done simply by substituting the index of refraction with the modified index of
refraction, which also has a piecewise linear profile [Ref. 1}.

The source of the EM radiation is assumed to be either a vertical electric
dipole or a vertical "magnetic dipole", with the latter providing an approximation to
the radiation of a horizontal electric dipole. The dipole is located along the positive
z-axis of the cylindrical coordinate system while the origin is sitting on the ground.

The x-y plane is the ‘flattened’ earth surface. After carrying out the Hankel




transform along the radial direction, the resulting spectrum of the Hertzian dipole
field within each layer of a linear segment of the modified refractive index profile is
reduced to a linear combination of the Airy functions. Specifically, the layers are
numbered to increase with height, with the first layer being the one above the
ground. The spectrum of the Hertzian dipole field is proportional to the product of
the values, at the transmitter height and at the receiver height respectively, of the
height-gain function. At a height within the i-th layer, the height-gain function is

given by [Ref. 4]:

fLp2)=Bp)ALP)k,(q) +k)(q)] , 1)

where p is the radial component of the propagation vector and is also the spectral
variable of the Hankel transform; hence it is the same throughout all layers. It is a
complex variable whose imaginary part represents the radial attenuation rate of the
spectral component of the Hertzian dipole field. Under the classical earth-flattening
approximation, the spectrum of the Hertzian dipole field contains a discrete portion
and a branch cut. The discrete spectrum gives rise to the creeping wave modes
diffracted by the earth surface and the dielectric waveguide modes supported by the
layered atmosphere. The contribution from the branch cut is usually negligible,
especially for the fic 'd in the shadow of the earth. The M-Layer program locates the
discrete spectrum for modes having a radial attenuation rate below a predetermined
value. Contributions from these modes determine the propagation factor of the

wave.




The variable g; in the i-th layer is a dimensionless linear function of height z
with the free space wavenumber &, the modified index of refraction m; at the lower

boundary z = z;, the slope of the modified index of refraction «;/2 and p as

3 ( 2
qllf] (m?w.(z-z.)-";’]- @

The height dependence of the field is given in terms of the functions k,(g;) and

parameters:

k,(q;), which are proportional to the Airy functions Ai(—q szx/ 3) and Ai (-q;)
respectively. Of these two functions, at a height so large thatg; is large and positive,
k,@;) represents a downward going wave and /43 14;) +k,(@;) represents an
upward going wave. The coefficients 4; and B; are determined by the conditions on
the continuity of the Hertzian dipole field and its derivative across layer boundaries
and by the normalization condition that the integral of the square of the height-gain
function over all height equals unity.

To fulfill the radiation condition, the highest layer is given the same refractive
index as the free space above it and only the outgoing wave is allowed within this
layer. Below the ‘flattened’ earth surface, the field is assumed to be a plane wave
propagating downward. Hence, only the normalization factors are required in the
highest layer and in the ground. By assigning B; to unity in the highest layer, all the
coefficients 4; and B; can be determined, according to the boundary conditions, to

within a multiplicative factor for B;. This multiplicative factor is then deduced from




the normalization condition. This procedure can also be carried out from the ground
level up. That these coefficients can be computed either from the highest level down
or from the lowest level up is a result of the fact that p belongs to the discrete
spectrum of the Hertzian dipole field. Consequently, agreement between these two
ways of evaluating the A; and B; coefficients confirms that a mode has been located

accurately.

B. EXTENDED COMPLEX NUMBER REPRESENTATION

The discrete spectrum of the Hertzian dipole field corresponds to the zeroes
of the modal function which is a determinant whose elements consist of k,(g;) and
k,(g;) at the layer boundaries. Numerically, the magnitude of this modal function
causes overflow and underflow problems as k,(g;) or k,(g;) becomes exponentially
large or small for complex g; values. In the M-Layer program, to overcome this
problem, a complex number is written as a scaled number, which is complex,
multiplied by a scaling factor which is an integer power of e, the base of natural
logarithm. This integer is chosen so that the greater of the absolute values of the

real part and the imaginary part of the scaled number lies within e *!

. A complex
number written in this form is called an extended complex number. Multiplication
of two extended complex numbers requires summing the two integer exponents in
addition to carrying out the regular complex multiplication of the scaled numbers.

Addition of two such numbers is achieved through the use of an addition subroutine:

the larger scaling factor is foctored out of both addends before they are combined.




The scaling factor is adjusted after each addition and after a sequence of
multiplications to make sure that the resulting scaled number is still within the
desired range. Addition is troublesome when the two numbers to be added nearly
cancel each other. Under this circumstance, the scaling factors of the two numbers
are identical and both the real parts and the imaginary parts of the scaled numbers
are almost equal with opposite signs. It is clear that the real part and the imaginary
part of the sum lose their accuracies to different degrees; hence the phase angle may
incur substantial error. To remedy this situation, interpolation procedures have to
be devised.

As two complex numbers come close to cancel each other, they must be out of
phase by almost 180 degrees. By factoring out the square root of their product
instead of the scale factor, the resulting addends become reciprocal to each other,
both lying within an identical small angle to, and on the same side of, the imaginary
axis. They are close to the unit circle, but one is on the inside and the other is on
the outside. Taking out further a phase factor of x/2 after writing the addends in
their exponential forms, the exponents become small numbers for which a Taylor
series expansion of the exponential function converges rapidly and can be used for
interpolating the sum to achieve higher accuracy. Note that after the extra phase
factor of n/2 is removed from the addends, it is actually the difference of the
resulting two reciprocals which is computed. This procedure effectively picks the

direction on the complex plane along which the addends are almost opposing each




other to carry out their cancellation. The resulting sum has a phase angle nearly
perpendicular to this chosen direction.

It is evident that the representation of a complex number by its complex
exponent of base e provides better phase accuracy for addition. A one-to-one
correspondence can be achieved by restricting the imaginary part of this exponent to
within -r and . This will be called the exponential representation or the complex
exponent representation henceforth. It is convenient for multiplication: adding the
complex exponents of the two factors will suffice. Conversion of the M-Layer
program from the extended complex number to the comple;( exponent representation

has been carried out.

C. OTHER REVISIONS

As better precision is achieved, problems with the mode search procedure and
the evaluation of the 4; and B; coefficients become severe. They are thoroughly
investigated and resolved. For mode search, although the division of the region of
interest into "contour rectangles” and further into square "meshes", and the search
pattern to move around the sides of a "contour rectangle” to find and follow "phase
lines" into it are kept, the basic assumption of Shellman and Morfitt [Ref. 5] that
both the real and the imaginary parts of the modal function are linear along every
edge of a mesh square is completely abandoned. For the evaluation of the A; and
B; coefficients, the "test for evanescence” conditions have been removed. A condition

to determine whether to evaluate the coefficients from the ground level up or from




the top level down has been fomulated and incorporated into the program. This
accomplishment leads to the relaxation of mode locating accuracy requirements
which, combined with the improved precision of the revised program, makes the first
order Newton-Raphson iteration unnecessary. The specific changes in the program
and the resulting gains in speed, accuracy and execution stability are discussed in the
following chapters. Suggestions to completely revise the mode search protocol to do
without the "contour rectangles" and to look for the modes according to their range

attenuation rates are also provided.




II. PROGRAM REVISIONS

M-Layer is structured into three parts: setup, mode search and propagation
factor evaluation. The main input is the modified refractive index values at specified
heights so that a piecewise linear profile can be constructed. If the mode locations
for the particular profile are available from a previous run of the program, they can
also be included in the input and the mode search procedures will be bypassed. The
various ranges and transmitter and receiver heights for which propagation factors are
desired are also specified. The subroutine WVGSTDIN is called to input the
information from an ASCII data file. The program then computes the constants to
be used for mode search and propagation factor evaluation. The mode search is
performed with the subroutine FNDMOD. The MODSUM subroutine is then
invoked to first compute the A4; and B; coefficients as explained in the Introduction,
then compute the propagation factor and the propagation loss. The complete
program structure is given in Figures 1 and 2. There are several other subroutines
which are not included in these and other figures, such as DHORIZ for computing
the horizon distance between a transmitter and a receiver for reference purpose;
CHKMOD, a maintenance routine for removing zeroes from reported mode
locations by older versions of the program; or AO2H2O, a routine to compute the

atmospheric absorption coefficient due to oxygen and water vapor. They will not be
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discussed as they do not contribute directly to the main purpose of this program of
locating the modes and computing the propagation factor.

The program structure has been altered as shown in Figures 3 and 4. Since the
A; and B; coefficients have to be evaluated only once, they are now obtained through
a call to the subroutine ABCOEF directly from the main program right after the
modes are located. Several subroutines are dropped in this revision for various
reasons: The subroutines NORME and NORMRE are eliminated because they are
no longer needed due to the change in complex number representation; the
subroutines NOMSHX, FDFDTX and DXDETR are not used because the modes
are now located with adequate precision without further iteration; the subroutine
ADDX is not listed separately because it is called only once and has been reduced
to only a few lines which are placed where the subroutine is called in the original
program. On the other hand, changes in the mode search algorithm require the
addition of two new subroutines: SURFQ is a modified and simpler version of SURF;
ROOTS replaces QUAD. Due to the change in complex number representation, all
subroutines listed below FNDMOD and MODSUM have been revised, including
their input/output lists. But except for SURF0 and ROOTS, the utilities of these
subroutines are the same as those of the original ones. Descriptions of these
subroutines can be found in the report by Yeoh [Ref. 4].

The most significant changes have been made in XCADD, XCDAIT and

XCDAIG for adopting the complex exponent representation and improving

11




Figure 3 New M-layer subroutines structure.
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Figure 4 New M-layer subroutines structure (continued).
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computation speed and accuracy; in FZEROX, FINDFX, ROOTS and SURFO for
stabilizing and simplifying the mode search algorithm; and in ABCOEF for
implementing the criteria to determine the reliable manner for evaluating the 4; and
B; coefficients. These changes are discussed in the sections below. The source code
listings of the completely new subroutines XCADD and ROOTS and the significantly
revised subroutines FZEROX and ABCOEF, which are compiled with Microsoft
FORTRAN version 5.00, are attached as Appendices A through D. Validation of
the revised program has been carried out at 9.6 GHz for all the 21 profiles listed in

Yeoh [Ref. 4].

A. ADDITION SUBROUTINE

XCADD is the subroutine implementing the addition of complex numbers
under the representation by their exponents. Given the double precision complex
numbers z; and z, as the exponents of the addends, this subroutine returns the
exponent of the sum. Since a double precision number has an accuracy of 53 bits,
if the real parts of z;, and z, differ by more than 53 bits, the exponent of their sum
will simply be the one of the greater real part. When cancellation becomes serious,
the square root of the addends is factored out first. Then the four-term Taylor series
expansions of the resulting reciprocals are summed. Since the leading term of the
sum of the Taylor series is a good estimate of the sum of the reciprocals and the

relative error of the four-term Taylor series sum is proportional to the fourth order
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of this leading term, the threshold for invoking this interpolation procedure is set at
the highest possible value of 2714 allowed under double precision. Experimenting
'with this procedure shows that this interpolation improves accuracy as long as the

threshold is set at a number between 224 and 274,

B. AIRY FUNCTION EVALUATION

Similar to the original program, the evaluation of the Airy function adopted the
algorithm prescribed by Schulten, et. al. [Ref. 6]. In the new program, changes are
made to follow the advice of Schulten, et. al. concerning the region within which a
Taylor series expansion, instead of the faster Gaussian quadrature, has to be used to
achieve double precision accuracy. Other changes in implementing the algorithm are

described below.

1. XCDAIT
Due to the similarity in their Taylor series coefficients, the Airy function
and its derivative are evaluated within a single loop. The relative accuracy of the

derivative of the Airy function is set at the double precision limit of 274,

2. XCDAIG
Six term Gaussian quadrature is used for evaluating the Airy furiction and
its derivative outside the circle of radius 4.97 centered at (0.90, 2.80) on the complex
plane. The use of four-term quadrature outside a radius of 15 from the origin

suggested by Schulten, et. al. is not adopted. The six-term quadrature in this range

14




retains a higher accuracy while overall speed improvement by using both the four-

term and the six-term quadrature appears to be minimal.

C. MODE LOCATING

As explained in the Introduction, the modes are located at the zeroes of the
modal function. These zeroes are located on the upper complex qy, plane. Here qy4
is the value of q, on the earth’s surface, which, according to Eq.(2) of Chapter L, is
a linear function of p2. For a horizontally propagating mode, p/k is close to unity.
The maximum range attenuation rate specified for the desired modes, which
corresponds to a limit on the imaginary part of p, determines approximately the
upper bound for the imaginary part of the q;; comﬁlex plane to be searched for
modes. The Shellman and Morffit mode search procedure first divides the search
region horizontally into "contour rectangles” each of which spans 160 meshes along
the real q,; direction. A mesh is a square whose size is an adjustable parameter of
the order 107* at 9.6 GHz for most of the cases considered herein. This parameter
is determined by the frequency and the slope of the modified index of reflection in
the lowest layer of the profile. The search commences at the top left corner of the
"contour rectangle” whose left edge has a real coordinate value close to the
difference of the real parts of the q;; values, with the minimum modified index of
refraction and the index near the surface substituted into Eq.(2) of Chapter I. After

the search over the initial rectangle is completed, the program moves to search the
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next rectangle until a specified maximum number of modes are found or a specified
number of "contour rectangles” have been searched.

The search for zeroes makes use of the fact that a real function changes sign
when it crosses a simple zero. Since a zero of a complex valued function F(q) is
where both its real part and imaginary part vanish, a necessary condition for a point
q, to be a zero is that it is on the intersection of two curves defined by Im{F(q)} =
0 and Re{F(q)} = 0. The program searches around a "contour rectangle" for a sign
change in Im{F(q)} across an edge of a mesh bordering the side of the "contour
rectangle” to determine that a line of Im{F(q)} = 0 has been encountered. The
search then follows this line into the meshes within the "contour rectangle”, checking
each mesh to see if a curve Re{F(q)} = 0 enters the mesh under investigation. All
these steps make use only of the assumption that the zeroes of the modal function
are simple. Once both the curve Im{F(q)} = 0 and the curve Re{F(q)} = 0 are
determined to be present within a mesh, the location of their possible interception
is estimated. An algorithm for this estimate is required.

Shellman and Morffit [Ref. 5] introduced a further assumption that the
functions Re{F(q)} and Im{F(q)} are both linear along the edges of a mesh. Based
on this assumption, they try to estimate the locations where the curve Im{F(q)} =
0 enters and leaves a mesh square, and the location of q, if a curve Re{F(q)} = 0
also enters the same mesh. It is obvious that information about the locations where

the curves enter and leave the mesh square is not essential. Furthermore, in the 18
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m duct height case, the scheme causes the search path to loop around four
contiguous meshes until the search is broken up by the limit on the number of
meshes to be investigated. Replacing their technique requires major changes in the
subroutines involved. A new subroutine ROOTS is provided to estimate the location
of the intersection of the curves Im{F(q)} = 0 and Re{F(q)} = 0. These changes
eliminate the looping problem.

Another problem is encountered in the 40 m duct height case when a large
number of zeroes are found in the lower half complex q;; plane. These zeroes
appear to belong to the reflection coefficient on the wrong sheet of the branch cut
and are not waveguide modes. This happens because the search region has been
extended below the real q,, axis to avoid the singularity in SURF. The problem with
this singularity should have been solved within SUREF, especially because it occurs
only when the derivative of the subroutine output variable gamma with respect to q;;
is computed. Since this derivative is not needed during mode search, the extension
of the search region to the negative q,; plane is unnecessary. A simplified routine,
SURFQ, is introduced which is exactly the same as SURF except that it does not
evaluate the derivative of gamma. By using this subroutine instead of SURF, the

search path in the revised program does not avoid the real and the imaginary axes.

1. FNDMOD
The search region is limited to the upper half q;, plane. All the modes
found are ordered according to their range attenuation rates before those numbered

beyond the maximum modes allowed are abandoned.
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2. FZEROX

Since the curve Im{F(q)} = 0 enters into a mesh square through an edge,
the values of Im{F(q)} must change sign over the end points of either one or all
three other edges. When there is only one other edge across which Im{F(q)}
changes sign at its end points, it is the edge across which the curve Im{F(q)} = 0
exits the mesh square. Ambiguity arises when all edges indicate a change of sign at
their end points. When this occurs, a "right turn rule" is adopted which assumes that
the curve exits the edge to the right of the one along which it enters the mesh
square. Such a rule avoids the retracing of the search path when the mesh square
is revisited as entering this same mesh square from the left side of an edge after
exiting from its right side requires a crossing of the Im{F(q)} = 0 curve, which is
prohibited under the simple zero assumption. On the other hand, the actual curve
may have turned left and then returns to this mesh square, i.e., following a "left turn
rule.” Under such a scenario, this wrong choice would have left a segrﬁent of the
curve not searched. This difficulty has not been observed during testing. In fact, the
ambiguous situation seldom occurs. Note also that, as remarked above, two lines of
Im{F(q)} = 0 do not cross each other unless a higher order zero is present. Hence,

only a "right turn rule” or a "left turn rule” for the curve to exit the mesh is allowed.
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Exiting the opposite edge demands a pair of crossing Im{F(q)} = 0 curves within the
mesh square. This violates the assumption that all zeroes are simple. Also note that,
the possibility of vanishing Re{F(q)} or Im{F(q)} values at the corners of a mesh

square is eliminated through a small adjustment in FINDFX.

3. FINDFX

Both the vertical shift away from the real q;; axis and the horizontal
offset away from the imaginary axis are unnecessary and have been removed from
this routine. Furthermore, as a result of converting to the complex exponent
representation, the sine and cosine of the argument of the modal functions are
examined for sign changes in FZEROX. This is implemented in FINDFX by
including the Cosine and sine values of the argument of the moda! function in the
output list. To avoid the indeterminate case when either the real or the imaginary
part of the modal function becomes zero at any corner of a mesh square, the
argument for computing the cosine and sine values is increased by 2733 when this
occurs. This is equivalent to a consistent small distortion of the particular corner of
the mesh square. This will not cause any error in locating the zero because FINDFX

still returns separately the unmodified exponent of the value of the modal function.

4. ROOTS
Assuming that the modal function is analytic within the mesh, this

subroutine utilizes the values of the modal function at the four corners of the mesh
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square to determine the Taylor series expansion coefficients of the modal function
to the third order. The roots of this cubic polynomial are then located using
Cardan’s solution by radicals. If the higher order coefficients fall below machine
resolution for a root within the mesh square, these coefficients are regarded as zero
and the order of the polynomial is reduced and can be solved more expediently. If
the function is determined to be constant over the mesh square, the center of the

square is taken as the root location.

D. EVALUATING A4; AND B;

As discussed in the Introduction, the 4; and B, coefficients can be evaluated
either from the top level down or from the lowest level up. These two procedures
are simply called "integration down" and "integration up”, respectively, in the original
documentation [Ref. 4]. The location of a mode has been called an eigenvalue.
That the results of "integration down" and "integration up" agree is a manifestation

that the eigenvalue is located accurately.

The subroutine ABCOEF evaluates the coefficients A; and B; for each mode.
If the range attenuation rate for a mode is greater than 0.1 dB/km, the coefficients
are evaluated from the lowest layer up. Otherwise, it is evaluated from the top layer
down. It is obvious that such a rule must be implemented because the results of
"integration up” and "integration down" do not agree for many modes. Efforts are

made to determine the cause of this discrepancy and to devise a means to resolve it.
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Investigation reveals that inadequate precision in the location of the modes is
one source of the problem. Since the B; coefficients depend on the A; coefficients,
while the 4; coefficients are obtained directly, only the 4; coefficients need to be
examined. The 4; coefficients of the six modes of lowest range attenuation rates for
all 21 profiles except the one without evaporation duct are computed using
eigenvalues of different accuracy controlled by the first order Newton-Raphson
iteration method. Table 1 shows the A; coefficient computed with the new program.
They are arranged from the top layer down. In the i-th layer, the A; coefficient
computed by "integration downward" depends only on 4, ; in the layer above while
that computed by "integration upward” depends only on A4, ; in the layer below.
Hence in each layer, the coefficient obtained by "integration downward" is listed
above that obtained by "integration upward". There are five sets of A4; values listed,
with the magnitudes given in powers of 10, and the phase given as a multiple of =.
They are obtained from eigenvalues of decreasing accuracy -the one used to compute
the left most column being the most accurate. The first set is computed using an
eigenvalue having a relative accuracy of 240, The second set uses an eigenvalue with
a relative accuracy of 273, The relative accuracy of the eigenvalue for the third set
is 2736, For the fourth set, the first order Newton-Raphson iteration of the mode
location is set at an absolute accuracy of 0.03 of the mesh size, same as that specified
in the original program. The eigenvalue for the right most set is the mode location

estimated by ROOTS without modification by the Newton-Raphson iteration. It is
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TABLE 1. IMPROVING a ACCURACY WITH EIGENVALUE 18 M DUCT
mode & q-eigenvalue: . 1 -01

eigenvalue difference: .000+00 .000+00 -.490-13 -.‘660-15 120-11 -.120-10  .150-06 .60D-

layer # Ai/down Ai/down Ai /down Ai/doun Ai/down
layer # Ai/up Ai/wp Ai/wp Ai/uwp Ai/jup
18 0261 .6719 0261 .6719 0261 .6719 0261 .6719 .0261

18 0261 .6719 0261 .6719 0261 .6779 0261 .6719 .0261

17 -.0625 .6368 -.0625 .6368 -.0825 .6368 -.0625 .6368 -.0625

17 -.0625 .6368 -.0625 .6368 -.0625 .63648 -.0625 .6368 -.0625

16 0139 7440 0139 7440 0139 7440 0139  .7440 .0139

16 0139  .7440 0139  .7440 0139 7440 0139 7440 .0139

15 L1216  .6353 .1216 .6353 1216 .6353 .1216  .6353 .1216

15 .1216  .6353 1216 .6353 1216 .6353 1216  .6353 1216

14 L0166 .5471 0166 .5471 0166 .5471 0166 .5471 .0166

14 0166 5471 0166 .57 0166  .5471 0166 .5471 .0166

13 -.1565 .5310 -.1565 .5310 -.1565 .5310 -.1565 .5310 -.1565 .5310
13 -.1565 .5310 -.1565 .5310 -.1565 .5310 -.1565 .5310 -.1565 .531(1
12 -.3842 .5659 -.3862 .5659 -.3842 .5659 -.3842 .5659 -.3843  .5659
12 -.3842 .5659 -.3842 .5659 -.3842 .5659 -.3842 .5659 -.3842 .5659
11 -2.2002 -.8081 -2.2002 -.8081 -2.2002 -.8081 -2.2002 -.8081 -2.1909 -.

1" -2.2002 -.8081 -2.2002 -.8081 -2.2002 -.8081 -2.2002 -.8081 -2.2002 -.8081

10 -5.4648 .2423 ~5.4648 .2423 <5.4648 .2423 -5.4654 .2423 -4.1810

.
N
-
o
-

10 -5.4648 .2423 -53.4648 .2423 -5.4648 .2423 -5.4648 .2423 =5.4647 .2423
9 -3.6974 -.6979 -3.6974 -.6979 -3.6974 -.6980 -3.6783 -.7012 -6.4611 -.2121
9 -3.6978 -.6978 -3.6978 -.6978 -3.6978 -.6978 -3.6978 -.6978 -3.6977 -.69
8 -3459 -.7982 23459 -.7982 .3460 -.7982 3482 -.7926 -1.9078 -.9148
8 3459 -.7983 3459 -.7983 .3459 -.7983 3459 -.7983 3459 -.7983
7 4098  .8794 4098 .8794 4098 .8794 4136 .8836 -1.0899 .5364
7 4097 .8793 4097  .8793 4097 .8793 4097 8793 4097 8793
6 .3480 .8181 .3480 .8161 .3480 .8141 .3526 .B205 -.5879
6 3479 .8160 3479 .8160 3479 .8160 3479 .8160 3479
5 .2923 .8304 .2923  .8304 .2923 .8304 .2972  .8358 - .3490
5 .2922 .8303 .2922 .8303 .2922 .8303 .2922 .B8303 .2922
4 -2359  .8619 .2359  .8619 .2360 .8619 .2408  .8690 -.2058
4 .2358 .86'8 .2358 .8618 .2358 .8618 .2358 .8s618 .2358
3 .1831  .8910 .1831  .8910 .1832 .8910 .1878 .9003 -.1250
3 .1831  .8908 .1831 .8908 .1831  .8908 .1831  .8908 .1831
2 .1300 .9149 1300 .9149 1301 9149 A342 .9275 -.0734
3 .1300 .9146 L1300 9146 1300 .9146 1300 .9146 .1300
1 .0586 .9335 .0586 .9335 .0588 .9335 0618  .9545 -.0318
1 .0586 .9331 .0586 .9331 .0586 .9331 .0586 .9331% .0586
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clear that, for this mode, the difference between these two methods of computing the
coefficients becomes negligible as the accuracy in mode location increases. For
example, in the 8-th layer, the magnitude of 4; computed by integrating downward
changes from -1.9078 to 0.3482, to 0.3460 to 0.3459, which agrees with the result
computed by integrating upward. The phase follows the same trend to an agreement
within 0.001%. Table 2 shows a similar set of output, but the coefficients fail to agree
even when the relative accuracy is increased to 2 ~%0, Note that the actual difference
in both the real part and the imaginary part of the two most accurate eigenvalues is
about 2“8, Double precision accuracy appears to be insufficient for the coefficients
computed with these two methods to agree for all modes. Some interesting features
can be observed in both tables, which are present in all 120 sets of values computed.
When disagreement is present in one set of A; coefficients, such as those in either
Table 1 or Table 2, the change toward smaller differences with improving eigenvalue
accuracy occurs mainly in one way of computation, but not both. For example, in
Table 1, the values of "integration downward" improve with better eigenvalue
accuracy, while those computed by "integrating upward" change little. In Table 2, the
results of "integration downward" are the ones that are holding steady as the accuracy
in eigenvalue improves. Furthermore, when disagreement occurs, the layer in which
the A; coefficient has the smallest magnitude, i.e., the one having the most negative
power of 10, divides the table into two parts. The results of two different ways of
computation agree in the layers above this one if they disagree in those below it, and

vise versa. No explanation will be attempted. Instead, practical rules are drawn up
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TABLE 2. IMPROVING A; ACCURACY WITH EIGENVALUE 36 M DUCT

wmode 3  q-eigenvalue: -31480001647813920+00 . 14796229405720070- 02 7L
eigenvalue difference: .380-14 .36D0-14 .38D-14 .36D-14 -.16D-09 -.220-09 -.530-07 .280-0

layer # Ai/down Ai/down Ai/down Ai/down Ai/douwn
layer # Ai/up Ai/up Aifup Ai/up Aijuwp
27 -.0009 .6663 -.0009 .6663 -.0009 .6663 -.0009 .6663 -.0009

27 L2353 7582 .2353 .7582 .2353 .7582 .2353 .7582 .2353

26 .0007 .6678 .0007 .6678 0007 .6678 .0007 .6678 .0007

26 -.0111  .3659 -.0111 3659 -.0111 3659 -.0111  .3659 -.0111

25 .0022 .6657 0022 .6657 .0022 .6657 0022 .6657 .0022

25 -1.8851 .3913 -1.8851 .3913 -1.8851 .3913 -1.8851 .3913 -1.8852

24 .0001 .6809 0001 .6809 .0001 .6809 .0001 .6809 .0001
26 -T7.4914 6081 -7.4914  .6081 -7.4914  .6081 -7.4914  .6081 ~7.4914

23 -2.9495 .5951 ~2.9495 .5951 -2.9495 5951 -2.9495  .5951 ~2.9495

23 -14.5340 7973  -14.5340 7973  -14.5340 7973  -14.5340 .7973  -14.5340
22 -12.1956 .9278 -12.1956 .9278  -12.1956 .9278 -12.1956 .9278 -12.1956
22 -23.5827 -.9407  -23.5827 -.9406 -23.5827 -.9406 -23.5827 -.9406 -23.5827
21 -35.2395 -.2502 -35.2395 -.2502 -35.2395 -.2502 -35.2395 -.2502 -35.2396 -.2501
21 ~44.4517 -.8199  -45.8691 .8599  -45.8691 .8599  -47.4590 -.1252  -47.4594 -.1251
20 -131.3304 -.9570 -131.3304 -.9570 -131.3304 -.9570 -131.3304 -.9570 -131.3307 -.9569
20 -129.0146 -.2961 -127.6070 .0248 -127.6070 .0248 -122.9124 -.9081 -120.9305 .8279)
19 -25.6088 -.9230 -25.6088 -.9230 -25.6088 -.9230 -25.6088 -.9230 -25.6088 -.9230
19 -25.6090 -.9228  -25.6184 -.9241  -25.6184 -.9241  -22.5644 -.8054  -20.2966 .7391

18 -13.6970 .6510 -13.6970 .6510 -13.6970 .6510 -13.6970 .6510 -13.6970 .651
18 -13.6970 .6510 -13.6970 .6510 -13.6970 .6510 -13.0618 .7675  -10.8148 .344

17 -7.0384 .4145 -7.0386 .4145 -7.0386 .4145 -7.0384  .4145 -7.0384 .414
17 -7.0384 .4145 -7.0386 .4145 -7.0384 4145 -7.0308 .4179 -6.3129 .180

16 -3.3146 .29 -3.3146 .2991 -3.3146  .2991 -3.3146  .2991 -3.3146 .2991
16  -3.3146 .2991 -3.3146 .29 -3.3146 .29 -3.3146 2991 -3.3116  .2970

15  -2.3132  .2632 -2.3132 .2632 -2.3132  .2632 -2.3132  .2632 -2.3132 .263J
15  -2.3132  .2632 -2.3132  .2632 -2.3132  .2632 -2.3132  .2632 -2.3127  .2629

1% -1.5669 .2415 -1.5669 .2415 -1.5669 .2415 -1.5669 .2415 -1.5669 .2415
14 -1.5669 .2415 -1.5669 .2415 -1.5669 .2415 -1.5669 .2415 -1.5668 .2415

13 -1.0838 .2352 -1.0838 .2352 -1.0838 .2352 -1.0838 .2352 -1.0838 .2352
13 -1.0838 .2352 -1.0838 .2352 -1.0838 .2352 -1.0838 .2352 -1.0838 .2352

12 -.6983 2432 -.6983 .2432 -.6983 .2432 -.6983  .2432 -.6983 243
12 -.6983  .2432 -.6983 2432 -.6983 .2432 -.6983 .2432 -.6983 243
1 -.3754 .272 -.3756 .2712 -.3756  .2712 =356 2712 -.3754 .21
1" -.3754 2712 -.37546  .2Mm2 <3756 .22 <3754 2712 -37546  .2n
10 -.0102 .3619 -.0102 .3619 -.0102  .3619 -.0102 .3619 -.0102 .361
10 -.0102  .3619 -.0102 .3619 +.0102 .3619 -.0102  .3619 -.0102 361
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to take advantage of these facts. In Table 1, the process of "integration upward” goes
through the troublesome 10-th layer and produces resulits which agree with the results
of downward integration before the downward process goes through the 10-th layer.
On the other hand, the downward integration is tripped up going across the 10-th
layer and produces results which fail to agree with the results from upward
integration. It is clear that the results from upward integration are the correct ones.
This conclusion is further supported by the fact that improving the accuracy of the
eigenvalue does not change significantly the results of upward integration. Similar
argument leads to the conclusion that in Table 2, the results of downward integration
are the correct values.

It can be concluded from the above observations that one of the methods of
computing the A; coefficients converges to the correct value much faster than the
other. It is also found that this method of faster convergence is always able to arrive
at the correct values for A; for all the cases under investigation.

Table 3 lists the statistics of the method of integration which yields the correct
A; coefficients for each of the 120 modes investigated. The differences in magnitudes
and phases in the lowest layer and in the layer below the highest are also listed.
Since for most of the cases, when disagreement in A; values occurs, the correct
integration is upward -this is used as the default. To decide that downward
integration should be utilized, the following steps are taken: The first A4, value of
downward integration is computed and compared to the value from upward

integration. If the magnitudes in dB disagree by less than 0.02 dB, their phases will
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be checked. If the phases differ by less than 10 -3y, the agreement is deemed
acceptable and the A; and B; coefficients computed from the lowest layer up are
used. Otherwise, the coefficients are re-evaluated again from the highest layer down.

Once the correct method of evaluating the A4; and B; coefficients is used, the
accuracy of the mode location becomes less critical. For all the cases investigated,
the A; coefficients obtained from mode locations estimated with or without the
Newton-Raphson first order iteration differ only by 0.06 dB in magnitude and
0.0013x in phase at most. In fact, few cases show differences more than 0.002 dB
and 0.00017. The Newton-Raphson iteration is not needed. Hence the subroutines

NOMSHX, FDFDTX and DXDETR are removed.
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TABLE 3. STATISTICS FOR EVALUATING ﬁ COEFFICIENT

AlA| (@B Aarg(A)/=
Duct Mode # | Evaluating Method
height
Layer Layer
up down bottom top-1 bottom top-1
1 X
2 X
3 X
02 4 x 0.172 0.093
5 X
6 X 8.362 13234
1 X
2 X
3 X 0.008 0.0002
04 4 x 1.030 1.8717
5 X 7.814 1.2948
ﬂ 6 X 0.002 0.0001
Il 1 X
2 X 0.002 0.0004
3 X 0.522 0.0158
06 4 X
5 x 13.278 0.4377
6 X 0.002 0.0001
1 X
2 X 0.002
3 x 0.002 0.0001 0.0001
o8 4 X 0.016 0.0026
5 x 4.066 0.6355
WS SN WSS W ). 1 . W WY 3.
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TABLE 3. CONTINUED 1.

Aarg(A)|=
up down bottom top-1 bottom top-1

1 X
2 x 0.0002
3 X 0.0001

10 4 x 0.04 0.0008
5 x 0.206 0.0402 0.0001
6 X 0.002 0.0001
1 X
2 x 0.006 0.0003
3 x 0.004

2 4 x 1.808 05661
5 x 1732 0.5429
6 X 1472 0.0414
1 X
2 x 0.002 0.0001
3 x 0.178 0.0052
4 X 0.024 0.0005
5 x 0.004 0.0001
6 x 0.85 04711
1 X
2 x 0.006 0.0002
3 X 0.004
4 X 0.006 0.0001
5 x 0.002 0.0001

e 0004000
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Evaluating Method

1 X 0.008 0.0001 I
2 X 0.002 0.0001 I
3 X 0.0001

18 4 x
5 X 0.016 0.0003
6 x 0.002
1 X 0.078 0.0164 1§
2 x ﬂ
3 X 0.002 0.0001

20 4 x 0.0008 |
5 X 0.16 0.0195 |
6 X 0.002 0.0001
1 b 8.708 0239
2 X
3 X 0.004 l

2 4 x 0.016
5 X 0.002 0.0001
6 X 031 0.0117
1 X
2 X 0.868 02842
3 x 0.006 0.0009

A 4 X 0.002 0.0001
5 x 0.026 0.0009

| N—— 71,1 T S——{ 7 .||} G —




TABLE 3. CONTINUED 3.

Evaluating Method

1 X _ 0.002 0.002 0.0001 0.0001
2 X 4308 0.121
3 X 0.006
26 4 x 0.002 0.0001
5 X 0.0001
6 x 0.034 0.0039
1 _X 0.028 0.0014
2 X 4.806 0.0728
3 X
28 4 X
5 X 0.008 0.002 0.0002
6 X 0.004 0.0019
1 x 1.562 0.0165
2 X
3 X 0.718 02455
30 4 X
5 x 0.004
6 X 0.724 0.0522
1 x 3.194 0.1648
2 x 0.002
3 X 13.12 0.1026
32
4 x 0.002
5 x 0382 0.0099
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TABLE 3. CONTINUED 4.

Duct Mode # | Evaluating Method
height
Layer Layer
up down bottom top-1 bottom top-1
1 . 0.002 0.002
2 X 13.456 0.0311
3 . 1.014 0.2347
34 4 x
5 x _0.03 0.0006
6 X 0.014 0.0006
1 X 0.0001 0.0014
2 X 1.686 02224
i 3 X 4.724 0.0919
36 4 X
5 X 0.006 0.0001
6 X 0.02 0.0001
1 X 0.996 0.0115
2 X 4974 0.0152
3 X
8 4 x 5.052 0.0417
5 X 0.0001
6 X 0.002
1 X 0.002 0.002
2 X 385 0.1226
3 X 3.568 0.1555
@ 4 x 3.448 0.1678
5 X 0.0001
| S [ T ncrse———c
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ITI. CONCLUSIONS AND RECOMMENDATIONS

A. Performance

This revision of M-Layer converts the extended complex number representation
of an exponentially large or small number into the direct representation by its
complex exponent. The accuracy of the computation has been improved in two ways:
First, an interpolation algorithm has been devised when severe cancellation of the
addends is detected. Secondly, accuracy for the evaluation of the Airy function has
been improved, not just by summing the Taylor series to double precision resolution

and by adopting six-term Gaussian quadrature, but also by expanding the region

within which the more expedient Gaussian quadrature is excluded in favor of the

more accurate, but time-consuming, Taylor series summation. The improvement in

accuracy is most easily seen from Table 1.

As discussed in the Introduction, evaluating the A4; and B; coefficients either

from the lowest layer up (integration up), or from the top layer down (integration

down), must result in the same values. This property provides a consistency check

for the accuracy of the computation. For the six modes of lowest range attenuation

rates of the 20 profiles of different duct heights, Table 1 lists the maximum

difference for each mode which shows a discrepancy between these two methods of

evalu :ting the A; coefficients. For each profile, the maximum value in magnitude
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TABLE 1. MAXIMUM DIFFERENCE IN A; COEFFICIENT BETWEEN
INTEGRATION UP AND DOWN

Difference in A coefficient
Duct Mode Magnitude difference in Phase difference over
height | # @B) 0.1x
old new old new
4 5.22 Yes
02 6 61.16 Yes
4 22.46 23
L' 04 5 106.9 Yes
06 3 8.62 Yes
5 32.36
5 77.84 Yes
08 6 44.9 Yes
10 5 Yes
4 69.38 Yes
12 5 46.32 Yes
6 7.46 Yes
14 6 30.6 Yes
22 1 8.64 Yes
24 2 80.48 Yes
26 2 110.68 Yes
28 2 150.9 67.68 Yes Yes
30 3 173.28 143.42 Yes Yes
1 11.38 Yes
32
3 525.04 188.04 Yes Yes
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TABLE 1. CONTINUED

Difference in A coefficient
Mode . . . .
Magnitude difference in Phase difference over
Duct #

old new old new

2 37.98 Yes
M 3 715.7 209.94 Yes Yes

2 112.74 Yes
36 3 957.92 231.68 Yes Yes
2 107.44 52.26 Yes Yes
38 4 1249 255.8 Yes Yes
3 167 112.72 Yes Yes
40 4 823.56 258.18 Yes Yes

Magnitude difference within 2dB are not listed.

difference in dB among all the layers is listed if it is greater than 2. If the phases of
the coefficients deviate more than 0.17 in any layer, that particular mode is also
singled out. The location of the mode of the revised program is within a relative
accuracy of 2™% achieved through first order Newton-Raphson iteration. Even
though discrepancies still exist when the duct is 28 meters or higher, it is clear that
the revised program computes more accurately than the original one.

For the cases where the two methods of evaluating the 4; and B; coefficients
disagree, it has been observed that one of the methods always leads to A; values
which are little changed when the accuracy in mode location is varied, while the

other method produces A; values which shift toward the results of the other method
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as the accuracy of mode location improves. Based on this observation, a consistency
check is implemented into the program to identify the method which converges
better. For the 120 cases investigated, when this method of faster convergence is
used, the 4; coefficients obtained from mode locations estimated with or without the
Newton-Raphson first order iteration differ only by 0.06 dB in magnitude and
0.0013x in phase at most. In fact, few cases show differences more than 0.002 dB
and 0.0001w. This allowed the Newton-Raphson iteration to be removed in this
revision.

Table 2 compares the performance between the original and the revised
programs. The time spent to find the modes has been reduced by an average of
22.58%. The revised program can always produce the modes found by the original
program. Moreover, the mode search is stable for the new program: the time it
requires to search for the modes is about the same for similar profiles. The sudden
jumps in mode search time for the 24 m and the 40 m cases, which indicate troubles
during the search, no longer happen.

With the proper method of evaluating the 4; and B; coefficients determined by
the consistency check, the output of the revised program differs from the original
program in some cases. The most serious deviation has been observed for the 38 m
duct height case as shown in Tables 3 and 4. For example, at a range of 36.5 km
with the transmitter at a height of 25 m and the receiver at 10 m, the coherent path
loss is 175.93 dB from the original program, and is 167.90 dB from the revised

program.
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ORIGINAL

(meter) Time Modes Time Modes | Improvement

00 0:00:37 3 0:00:35 5.40%

| o 0:32:14 9 0:31:55 9 0.98%
04 1:14:12 25 1:05:04 25 12.31%
06 2:10:18 53 1:56:50 53 10.33%
| o 0:35:58 39 0:29:25 39 18.21%
10 0:53:24 59 0:48:32 61 9.11%
12 1:09:40 86 1:01:44 89 11.39%
14 1:20:42 94 1:11:13 97 11.75%
16 1:54:35 95 1:18:07 97 31.82%
18 1:45:09 100 1:27:15 104 17.02%
20 1:46:19 103 1:34:20 105 11.27%
22 1:52:54 105 1:35:18 106 15.59%
24 3:42:59 106 1:46:47 107 52.11%
26 2:07:42 106 1:43:55 108 18.62%
28 2:00:05 107 1:44:59 109 12.57%
30 1:59:59 107 1:46:19 108 11.39%
32 1:55:29 108 1:42:58 110 10.84%
34 2:29:57 109 2:15:58 111 9.32%
36 2:31:40 109 2:17:20 112 9.45%
38 2:38:44 110 2:18:09 111 12.97%
40 5:41:17 95 2:39:39 111 53.22%
Total 40:23:54 31:16:22 22.58%
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TABLE 3. ORIGINAL PROGRAM 38 M DUCT OUTPUT

frequency = '9600.0000 mhz

range zt 2r coherent incoherent coherent incoherent horizon
(km) (m) (m) wmode sum mode sum path loss peth loss (km)
(dB) (dB) (dB) (dB)
27.3 25.0 4.0 -15.30 -15.62 156.10 156.43 28.9
27.3 25.0 6.0 .62 -2.35 140.18 143.16 30.7
27.3 25.0 8.0 -1.11 -4.21 1461.92 145.01 32.3
27.3 25.0 10.0 -27.26 -12.66 168.06 153.46 33.6
36.5 25.0 4.0 -16.94 -16.62 160.28 159.96 28.9
36.5 25.0 6.0 -3 -2.05 144.07 145.39 30.7
36.5 25.0 8.0 -2.21 -3.72 145.55 147.06 32.3
36.5 25.0 10.0 -32.59 -14.29 175.93 157.64 33.6
45.8 25.0 4.0 -19.89 -16.96 165.20 162.26 28.9
45.8 25.0 6.0 -2.81 -1.89 148.11 147.19 30.7
45.8 25.0 8.0 -4.11 -3.43 149.41 148.74 32.3
45.8 25.0 10.0 -28.57 -15.22 173.88 160.52 33.6

TABLE 4. REVISED PROGRAM 38 M DUCT OUTPUT

frequency = 9600.0000 mhz

range 2t zr coherent incoherent coherent incoherent horizon
(km) (m) (m) mode sum mode sum path loss peath loss (km)
(d8) (dB) (dB) (dB)
27.3 25.0 4.0 -14.38 -15.66 155.18 156.47 28.9
27.3 25.0 6.0 42 ~2.37 140.39 143.18 30.7
27.3 25.0 8.0 -1.52 ~4.21 142.33 145.02 32.3
27.3 25.0 10.0 -21.20 -12.51 162.01 153.31 33.6
36.5 25.0 4.0 -17.32 -16.60 160.66 159.94 28.9
36.5 25.0 6.0 -.48 -2.08 163.82 145.42 30.7
36.5 25.0 8.0 -1.62 -3.713 144.96 147.07 32.3
36.5 25.0 10.0 -24.56 -14.04 167.90 157.38 33.6
45.8 25.0 4.0 -20.26 -16.93 165.57 162.23 28.9
45.8 25.0 6.0 -3.14 -1.93 148.44 147.23 30.7
45.8 25.0 8.0 -4.62 -3.46 149.92 148.76 32.3
45.8 25.0 10.0 -25.40 -14.90 170.7 160.21 33.6
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B. Recommendations

The mode search protocol of this program needs to be revised. Since the
search is limited by the number of modes to be found and the maximum range
attenuation rate accepted, it is more logical to begin with locating the mode of the
lowest attenuation, and then proceed to look for the next one in the order of
increasing attenuation rate. Furthermore, there appears to be only a single ‘phase
line’ of vanishing real part of the modal function on which all the modes are located.
This line extends from lower to higher range attenuation rates. The partition of the
search region into rectangles, as has been done in this program, tends to cut the
"phase line" into segments before the program starts to search for the end points of
these segments and then follow the segments in different directions. It is clear that
a better way for mode search is to find the lower end of the single "phase line" then

follow it to the other end.
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APPENDIX A: SUBROUTINE XCADD

This Appendix lists the addition subroutine XCADD which returns the complex
exponent of the sum when the complex exponents of the addends are given. This is

a complete re-write of the original subroutine of the same name.
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subroutine xcadd(zx,z1x,z2x)

Given 21x and z2x, this subroutine adds the two complex numbers
21=exp(z1x) and 22zexp(z2x) for z=exp(zx) and returns zx.

inputs...
zix=complex exponent of the complex number zi
z2x=complex exponent of the complex number z2

outputs...
zx=complex exponent of the complex number 2

subroutines called...

O 060 0 0 0o 06 0o 0 o 060 00

c***t*ti**t

impticit real*8 (a-h,o-2)

complex*16 zx,21x,22x,zt1x,2t2x,clogzh,dsum,czero, cerrx, cone, chpi

parameter(pi=3.141592653589793238462643d0, twopi=2.d0*pi,
hpi=0.5d0*pi , zero=0.d0,c16=1.d0/6.d0,
bit14=1.d0/16384.d0,bit24=bit14/1024.d0,ctol=bit14,
dpi=2259.d0/4294967296.d0/4294967296 .d0, hdpi=dpi/2.d0,
e2m54=-3.742994775023704819d1, e2p27=-0.5d0%e2m54,
chpi=(0.d0, 1.57079632679489661923132d0), cone=(1.d0,0.d0),
czero=(0.d0,0.d0), cerrx=(-3.742994775023704819d1,0.d0))

[ cerrx=e2mb4=-54*10g(2)=exponent below machine accuracy

+* 4+ + + + 4+

dimension ztmp(2),stmp(2)
equivalence (ztmp,clogzh), (stmp,dsum)
cttttt
c Replace the input variables with a local variable so that
c equations in the form of y=x+y will not lead to confusion.
c
zt1x=21x
zt2x=22x
c
clogzh=0,5d0*(zt1x-2t2x)
dxh=zztmp(1)
if(dxh .lt. zero) then
x=2t2X
dxh=-dxh
else
2x=ztix
end if
c.ﬁ'iii't
¢ machine accuracy = 2**(-53)
c 2**(27)me**e2p27
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50
51
52
3
54
35

57
58
59
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if (dxh .ge. e2p27) then
return

else
zx=0.5d0*(zt 1x+2t2x)
dsum=cdexp(clogzh)
dsum=1.d0/dsum+dsum
if (cdabs(dsum) .gt. ctol) then

zxecdlog(dsum)+zx

else

Cancellation is serious. Imlclogzh] is close to pi/2 or -pi/2.

yi=dnint(2tmp(2)/twopi)*2.d0
ztmp(2)=2tmp(2)-pityi
dyi=dpi*yi
if (ztmp(2) .lt. zero) then
clogzh=-clogzh
dyi=-dyi
end if

ztmp(2)=(ztmp(2)-hpi)-hdpi-dyi

dsum=2.d0*clogzh*(conetc16*clogzh*clogzh)

if (dsum .eq. czero) then

Note that a complete cancellation of two nonzero numbers of
order one is considered to be as accurate as what is allowed

by the machine and the algorithm.
zx=cerrx+chpi+zx
else
dsum=cdl og(dsum)

if (stmp(1) .lt. e2m54) stmp(1)=e2m54

zx=dsum+chpi+zx
end if
end if
return
end if

end
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APPENDIX B: SUBROUTINE FZEROX

This Appendix includes the listing of the subroutine FZEROX which searches
identifies the meshes which may contain modes within a contour rectangle. The

Shellman-Morffit mode locating algorithm has been completely replaced.
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subrouti

ctttti

ne fzerox(tleft,tright,tbot, ttop, tmsh0,zeros,ni,nf)

¢ fzerox is a routine for finding the zeroes of a complex function, f,

c which Li

simple 2

parameters
tleft -
tright-
tbot -

ttop -
tmesh -

zeros -

nf-ni -

subroutines

findf

roots

nomsh
citt**

implicit

complex*
+

e within a specified rectangular region of the

complex q11 plane, assuming that the function has only

eroes over this rectangle.

specifying the search rectangle:

value of the real part of ql1 at the left edge.

value of the real part of q11 at the right edge.
value of the imaginary part of q11 at the bottom edge.
(this is set to 0.)

value of the imaginary part of ql1 at the top edge.
set equal to about half the average spacing between
zeroes within the rectangle. A smaller value may be used
as a safety measure, but too small a velue will result
in excessively long run time.

output list of (complex) values of qi1 at which
zeroes are found.

the number of zeroes found

calledd--
x

X
double precision (a-h,o0-2)

16 £10,f01,f11, fxnew, fxold, fx00, fx10, fx01, fx11,
czero,one,ci,sol,zeros

parameter({czero=(0.d0,0.d0),one=(1.d0,0.d0),ci=(0.d0,1.d0))

$include: 'mla

parm.inc’

*#tds Begin listing of: mlaparm.inc

~N O VN NN -

32
33
34
35
36

[ T + B + TN + T + )

include file to define the

maximum # of layers (mxlayr)
maximum # of modes (mxmode)

parameter (mxlayr=35 )
parameter (mxmode=127)
sxx2% End Listing of: mlaparm.inc
dimension kedgel(100),kedge2(100),kedge3(100),kedges4(100),

(2]

c + loc3s

+ locter(mxmode), Loc12i (mxmode), loc23r{mxmode), Loc23i (mxmode),

r({mxmode), Loc34 i (mxmode), lock1r(mxmode), Locé1i(mxmode),

+ sol(3),theta(2),zeros(2*mxmode+1)
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37
38
39
40
“
42
43

45

47

49
50
51
52
53
54
55
56
57
58
59

2a2AR2EY

o 0o 0 0

67

69

28JIJIFIA¥ANIII

common /tmccom/ tmesh

l Sdudadeded

0o O o

maxnsq - maximm number of mesh squares allowed or any one
phase line
maxnt - maximm number of times fzerox will reduce tmesh

maxnsg=3*max0( int((ttop-tbot)/tmsh0), int((tright-tieft)/tmsh0))
maxnt=2

[ adadadaded

~

tmesh = tmsh0
ntime = 0
goto?7

tmesh=tmesh/2.0d0
ntime = ntime+1

if(ntime .gt. maxnt) go to 97

continue

ci****

[

calculate coordinates of rectangle edges in tmesh units

jlt = idnint(tleft/tmesh-0.5d0)
jrt = idnint(tright/tmesh+0.5d0)
jtop = idnint(ttop/tmesh+1.5d0)
jbot = 0

initialize parameters for starting search at upper left
corner of search rectangle

ki = jtop
kr = jlt
kedge = 1
call findfx(kr, ki, fxnew,xnew,ynew)
nret=0
nre2=0
nre3=0
nre4=0
knot12=0
knot23=0
knot34=0
knoté41=0
nf=ni
nit=ni+




go to 15
ctﬁtit
10 continue
if(nrzt .lt. 2) go to 15
c write(16,2000) nrzl
gotoS
15 nrzi=0
nrsqu = 0
20 fxold=fxnew
xold=xnew
yold=ynew
go to (21,26,31,36),kedge
ctt*ti
c search along left edge of rectangle for changes in the
c sign of imag(f)
c
21 continue
if(ki.eq.jbot) then

8832823828332 EER

100 kedge=2

101 go to 26

102 end if

103 ki = ki-1

104 call findfx(kr, ki, fxnew,xnew,ynew)
105 if (yold*ynew .gt. 0.d0) go to 20
106 if(nrel.eq.0) go to 23

107

108 ¢ check if crossing point has been previously found
109 ¢

110 do 22 k=1,nrel

m if(ki.eq.kedgel(k)) go to 20
112 22 continue

13 ¢

114 ¢ follow phase line through rectangular region
115 ¢

116 23 fx01=fxold

117 fx01r=xold

118 fx01izyold

119 x00=fxnew

120 £x00r=xnew

121 x00i=ynew

122 i = ki

123 lr = jlt

124 go to 43

125 ct*tt'

126 ¢ search along bottom edge of rectangle for changes in the
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127 ¢ sign of imeg(f)

128

129 26 continue

130 if(kr.eq. jrt) then

131 kedge=3

132 go to 31

133 end if

134 kr = kr+1

135 call findfx(kr, ki, fxnew,xnew,ynew)
136 if (yold*ynew .gt. 0.d0) go to 20
137 if(nre2.eq.0) go to 28

138

139 ¢ check if crossing point has been previously found
140 ¢

141 do 27 k=1,nre2

142 if(kr.eq.kedge2(k)) go to 20

1463 27 continue

144

145 ¢ follow phase line through rectangular region
146

147 28 fx00=fxold

148 fx00r=xold

149 fx00i=yold

150 £x10=fxnew

151 £x10r=xnew

152 fx10isynew

153 li = jbot

154 {r = ke-1

155 go to 48

156 ctw'htt

157 ¢ search along right edge of rectangle for sign changes in imag(f).
158 ¢

159 3 continue

160 if(ki.eq.jtop) then

161 kedge=4

162 go to 36

163 end if

164 ki = ki+1

165 catl findfx(kr, ki, fxnew,xnew,ynew)
166 {f (yotd*ynew .gt. 0.d0) go to 20
167 i¥(nre3.eq.0) go to 33

168

169 ¢ check if crossing point has been previously found
170

”m do 32 k=1,nre3
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172
173
174
17
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
21
212
213
214
215
216

if(ki.eq.kedge3(k)) go to 20
32 continue

[ follow phase tine through rectangulsr region

33 fx10=fxold
fx10r=xold
fx10i-yold
fxt1=fxnew
fx11r=xnew
fx11izynew
li = ki-1
{r = jret-1
go to 53
ctttti
¢ search along top edge of rectangle for sign changes in imag(f).
c
36 continue
if(kr.eq.jlt) go to 80
kr = kr-1
call findfx(kr, ki, fxnew,xnew,ynew)
if (yold*ynew .gt. 0.d0) go to 20
if(nre4.eq.0) go to 38

c check if crossing point has been previously found
do 37 k=1,nre4
if(kr.eq.kedge4(k)) go to 20

continue

follow phase line through rectangular region

g 0o O o ﬁ

fx11=fxold
fx11r=xold
fx11li=yold
fx01=fxnew
£x01r=xnew
£x01i=ynew
ti = jtop-1
tr = kr

go to 58

c.tt"

¢ enter mesh square from left side or exit rectangle at right edge.

41 tr=lr+l
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ralg
218
219
220
221
222
223
224
225
226
227
228
229

23
232
233

235

237

239
240
241
242
243
264
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261

if (Ir .le. jrt-1) go to 42
nre3=nre3+1
kedge3(nre3)=li+1
go to 10
42 x01=fx11
fx01r=fx11r
fx01i=fx11i
£x00=£x10
fx00r=Ffx10r
#x00i=fx10i
43 continue
call findfx(lr+1,tie1, $x11,fx11r, fx11i)
call findfx(lr+1,1i,fx10,fx10r,fx10i)

ctﬁtitﬁi
¢ Determine the edge of exit of im(f)=0 from current mesh.
edgeit=fx01i*fx11i
edgeib=fx00i*fx10i
if (edgeib .gt. 0.d0) then
c Im(£)=0 goes through the 01 to 10 line.
if (edgeit .gt. 0.d0) then
c Im(f)=0 goes through the 10 to 11 edge (edge 1).
Llout=1
else
c Im(f)=0 goes through the 01 to 11 edge (edge 2)
tout=2
end if
else
c Im(f)=0 goes through the 00 to 10 edge (edge &)
lout=4
if (edgeit .lt. 0.d0) then
c Im(f)=0 also runs through 01 to 11 and 10 to 11 edges.
c Store crossing location and in/out information.
knot34=zknot34+1
c loc34r(knot34)=1r
loc34i(knot34)=1i
end if
end if
ctii'itﬁ
go to 60
ctt.tt

c enter mesh square from bottom side or exit rectangle at top edge.
46 li=zli+l

if (li .le. jtop-1) go to 47

nrebd=nre4+1

kedged(nreé)=lr
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274

276
77
278
2r9
280
281
282
283
284
285
286
287
288
289

N
292
293

FIIEIE

300
301
302
303
304
305
306

&7

go to 10

£x00=fx01

£x00r=£fx01r

x00i=fx01i

fx10=fx11

fx10r=£fx11r

fx10i=fx11i

continue

call findfx(lr,li+1,fx01,fx01r, £x01i)
call findfx(lr+1, li+1, fx11,fx11r,fx11i)

P Sadndededodod ]

c

[ T ¢ ]

Determine the edge of exit of im(f)=0 from current mesh.
edgeil=fx00i*fx01i
edgeir=fx10i*fx11i
if (edgeir .gt. 0.d0) then
Im(£)=0 goes through the 00 to 11 line.
if (edgeil .gt. 0.d0) then
Im(£)=0 goes through the 01 to 11 edge (edge 2)
lout=2
else
Im(f)=0 goes through the 00 to 01 edge (edge 3).
lout=3
end if
else
Im(£)=0 goes through the 10 to 11 edge (edge 1)
lout=1
if (edgeil .lt. 0.d0) then
Im(f)=0 also runs through 00 to 01 and 01 to 11 edges.
Store crossing location and in/out information.
knoté1=knoté1+1
lock1r(knotél)=tr
tocéli(knoté1)=ti
end if
end if

[ Sadadededotod J

go to 60

c’ﬁﬁtt

¢ enter mesh square from right side or exit rectangle at left edge.

51

52

tr=lr-1

if (lr .ge. jlt) go to 52
nrelanrel+1
kedgel(nret)=1i

go to 10

fx11=fx01
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307 fxt1r=fx0tr

308 fx11i=fx014

309 fx10=£x00

310 fx10r=£x00r

311 x10i=£x001

312 53 continue

313 call findfx(lr, Li+1,£x01,fx01r,fx01i)

314 call findfx¢lr,ti,fx00,fx00r,fx00i)

315 ctt*t*tt

316 ¢ Determine the edge of exit of im(f)=0 from current mesh.
317 edgeit=fx01i*fx11i

318 edgeib=fx00i*fx10i

319 if (edgeit .gt. 0.d0) then

320 ¢ Im(f)=0 goes through the 01 to 10 line.

321 if (edgeib .gt. 0.d0) then

322 ¢ Im(£)=0 goes through the 00 to 01 edge (edge 3).
323 lout=3

324 else

325 ¢ Im(f)=0 goes through the 00 to 10 edge (edge 4)
326 lout=4

327 end if

328 else

329 ¢ Im(£)=0 goes through the 01 to 11 edge (edge 2)
330 tout=2

331 if (edgeib .lt. 0.d0) then

332 ¢ Im(£)=0 also runs through 00 to 10 and 00 to 01 edges.
333 ¢ Store crossing location and in/out information.
334 knot12=knot 12+1

335 ¢ toc12r(knoti2)=Lr

336 ¢ loc12i(knot12)=L1

337 end if

338 end if

339 cttt*tl'

340 go to 60

3‘1 c'ﬁttt

342 ¢ enter mesh square from top side or exit rectangle at bottom edge.
343 56 li=li-1

344 if (li .ge. jbot) go to 57
345 nre2=nre2+1

346 kedge2(nre2)=lr+1

347 go to 10

348 57 x01=fx00

349 x01r=£x00r

350 £x01i=fx00i

351 fx11=£x10

S0




352 £x11r=£fx10r

353 x11i=fx10i

354 58 continue

355 call findfx(ir,li,¥x00,fx00r, fx007)
356 call findfx(lr+1,Li,fx10,fx10r, fx10i)

357 cwtenaas

358 ¢ Determine the edge of exit of im(f)=0 from current mesh.

359 edgeil=fx00i*fx01i

360 edgeir=sfx10i*fx11i

361 if (edgeil .gt. 0.d0) then

362 ¢ Im(f)=0 goes through the 00 to 11 line.

363 if (edgeir .gt. 0.d0) then

364 ¢ In(f)=0 goes through the 00 to 10 edge (edge 4)
365 lout=4

366 else

367 ¢ Im(f)=0 goes through the 10 to 11 edge (edge 1).

368 lout=1

369 end if

370 else

371 ¢ Im(f)=0 goes through the 00 to 01 edge (edge 3)

372 lout=3

373 if (edgeir .lt. 0.d0) then

374 ¢ Im(£)=0 also runs through 00 to 10 and 10 to 11 edges.
375 ¢ Store crossing location and in/out information.

376 knot23=knot23+1

377 ¢ loc23r(knot23)=Lr

378 ¢ loc23i(knot23)=Li

3 end if

380 end if

381 ¢

382 c*tiiitt

383 O continue

384 nrsqu=nrsqut1

385 if(nrsqu .gt. maxnsq) go to 95

3“ c#t**it

387 c Test for there being at least one re(f)=0 line entering and
388 ¢ leaving the mesh square.

389 ¢

390 if ((fx00r*fx10r .gt. 0.d0) .and. (fxOtr*fx11r .gt. 0.d0)
391 + .and. (fx00r*fx01r .gt. 0.d0)) go to (41,46,51,56) lout
392 ¢

393 ¢ Computate the values of the modal function at the corners of a
39 ¢ a mesh square to determine its Taylor series to the 3rd order
395 ¢ for estimating its root locations.

396 ¢
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397
398
399
400
401
402
403
404
405
406
407
408
409
410
L3%
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441

c f00=one

$10=cdexp( fx10- fx00-one

$01=cdexp( fx01-fx00)-one

f11=cdexp(fx11-fx00)-one
c
c'Qttttt'.ﬁiiﬁt‘tﬁ‘i‘tttt’t‘*..ti*tﬁtt*tﬁ*It'tttﬁittttﬁttﬁttt't*tit'i't
c write (16,3001) ni,nf,Llr, i, knot12,knot23,knot34, knoté1
¢ 3001 format(/* ni, nf, lr, Lli and knot12, 23, 34 and 43 before ROOTS
c + Y/, 2i6,2x,216,2x,416)
c
crwnnssnens® agtimate locations of zeroes by radicals ¥eveitwaddwistins
c

call roots(f10,f01,f11,s0l,nrsol)

do 63 n=1,nrsol

ureal = dreal(sol(n))

uimag = dimag(sol(n))

if (ureal .lt. 0.d0 .or. ureal .gt. 1.0d0) go to 63

if (uimag .lt. 0.d0 .or. uimag .gt. 1.0d0) go to 63
62 theta(1)=(lr+ureal)*tmesh

theta(2)=(li+uimag)*tmesh

nf = nf+

zeros(nf)=dcmplx(theta(1), theta(2))

nrzl=nrz{+1
63 continue
cﬁttQtiii*'.t.ﬁtlt.ﬁ*i**.QtttitittQ'ttii'i'tttti'*ittﬁﬁiﬁtt*tiﬁit*ﬁi
c write (16,3002) ni,nf,nrsol
c 3002 format(/!' out of ROOTS at 63, ni, nf and # of roots ',3i4)

citi.Itﬁ**t'ﬁ.ﬂ't.t'i*tttttt'it*tt.t"t**tittt't*t'ti'tﬁ'iit'.l'ﬁtﬁ*

c continue following the phase line
go to (41,46,51,56) lout

ctit*ii

cc

80 continue
c
return
c.ith*
95 continue
write(16,9500)
write(16,4001)tr,li,ni, nf, tmesh
write(* ,9500)
4001 format('go to 5 from 95 at lr, li =',i6,’,',i6,' ni, nf =*,i6,
4+, 0.i6,', mesh size =',d14.6)

go to 5
cQ'iit
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442
443

445

4e7

449
450
451
452
453
454
455
456
457
458

97 continue
wurite(16,9700)
write(16,4002)tr,Lli,ni, nf, tmesh
wurite(* ,9700)
4002 format('go to 5 from 97 at lr, li =',i§6,',',i6,' ni, nf =',i6,
+1,¢ §6,', mesh size =',d14.6,/'zeroes found are kept.')
c nfsni

return
c
c**** format statements
9500 format(/5x,'too many squares on same phase line -- ¢,

$ ‘reduce tmesh and start over')

9700 format(/5x,'tmesh has been reduced but problems remsin in‘',
$ ! executing fzerox')

c
end
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APPENDIX C: SUBROUTINE ROOTS

This Appendix contains the listing of the subroutine ROOTS. This subroutine
replaces the portion of the subroutine FZEROX where the coefficients of a quadratic
equation are determined, and the subroutine QUAD for locating the zeroes of a
quadratic polynomial. In the revised subroutine FZEROX, the roots of a cubic

polynomial has to be found. This subroutine determines these zeroes by radicals.
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subroutine roots (f1,f2,f3,sol,nrsol)
cii*tiQt".'ititttttt'iti*ﬁ'iit"!*t.*.tttitt't“ttmﬁt.ttﬁﬁt*tt.tttt

0o 0 6 o0 600

This subroutine finds the roots of a third order polynomial by
radicals when the values of this polynomial at 2z=0, z=1, z=i and
2=1+i are given as f0=1, fi+f0, f2+f0 and f3+f0 respectively.
Note that this algorithm tekes cubic roots of two complex numbers
(hence the name ‘solution by radicals') and use their linear
combinations as the roots of a third order polynomial.

cit*it*i*tti*tiﬁit‘i.i***.**t*ﬁtit.*t'**t.f'i"*itttt'it"*i"'ttftt"t

implicit real*8 (a-h, o-2)
complex*16 f1,f2,{3,2ero,one,ci,eplé,emls, ep23, em23,

fa, fb, fc,fd, fa1, fa2, fa3, fals,p,q,delt,z,zm,u,v,sol
parameter (xbit52=52.d0*0.69314718055994531d0, thrd=1.d0/3.d0,
bit50=1.d0/33554432.d0/33554432.d0,bit51=bit50/2.d0,
bit52=bit51/2.d0, tot=0.001d0,
zero=(0.d0,0.d0),one=(1.d0,0.d0),ci=(0.d0,1.d0),
ep14=(0.5d0,0.5d0),em14=(0.5d0,-0.5d0),
ep23=(-0.5d0, 0.86602540378443864675d0),
em23=(-0.5d0, -0.86602540378443864675d0) )

dimension sol(*)
fa=zone
fo=(f2-ci*fi+emi4*f3)
fc=((eplé+one)*f1-(emlé+one)*f2+ci*f3)
fd=(em14*(f2-£1)-epl4*£3)

+

+ + + + + 4

if
if
if
if

(cdabs(fb) .le. bit50) fb=zero
(cdabs(fc) .le. bit51) fc=zero
(cdabs(fd) .le. bit52) fd=zero
(fd .ne. zero) then
fal=(-thrd)*fc/fd
fa2=fb/fd
fa3=fa/fd
fals=fal*fat
p=thrd*fa2-fals
q=0.5d0*(fa3+fal*fa2)-fal*fals
if (p .eq. zero) then
if (q. eq. zero) then
nrsol=1
sol(1)=fal
return
else
nrsol=3
u=((-2.d0)*q)**thrd
sol(1)=u+fatl
sol(2)=ep23*u+fal
sol(3)=em23*u+fal
return
end if
else
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100

it (q. eq. zero) then
nrsols3
sol(1)=fal
u=cdsqrt((-3.d0)*p)
sol(2)=fat+u
sol(3)=fal-u
return
else
v=p/q
Z=ptv*v
absz=cdabs(2)
if (absz .lt. tol) then
m=-2
fn=dint(1.d0-xbit52/dlog(absz))
lastn=idint(fn)-1
dnn=fn-0.5d0
dnd=fn+1.0d0
del t=one
do 100 nt=1,lastn
dnn=dnn-1.d0
dnd=dnd-1.d0
del t=(dnn/dnd)*del t*zm+one
continue
delt=(0.5d0*delt/q)**thrd
u=p*delt
v=-1.d0/delt
else
delt=cdsqrt(one+z)-one
u=(q*delt)**thrd
v=-p/u
end if
nrsol=3
sol(1)=u+v+fal
sol (2)=ep23*u+eme3*v+fal
sol(3)zem23*u+ep3*v+fal
return
end if
end if
else if (fc .ne. zero) then
if (fb .eq. zero) then
if (fa .eq. zero) then
nrsol=1
sol(1)=zero
return
else
nrgol=2
z=cdsqrt(-fa/fc)
sol(1)=2
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100
101
102
103
104
105
106
107
108
109
110
m
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138

200

sol(2)=-2
return
end if
else
fa1=0.5d0*fb/fc
fa2=fa/fc
z=fa2/fal/fal
absz=cdabs(2)
it (absz .lt. tol) then
fr=dint(1.d0-xbit52/dlog(absz))
lastn=idint(fn)-1
dnn=fn-0.5d0
dnd=fn+1.0d0
delt=one
do 200 nt=1,lastn
dnnadnn-1.d0
dnd=dnd-1.d0
delt=(dnn/dnd)*del t*z+one
continue
delt=-0.5d0*del t/fal
nrsot=2
sol(1)=fa2*delt
sol(2)=1.d0/delt
return
else
delt=cdsqrt(one-2)
nrsol=2
sol(1)=-fal*(one-delt)
sol(2)=-fal*(one+delt)
return
end if
end if
else if (fb .ne. zero) then
nrsol=1
sol(1)=-fa/fb
return
else
nrsol=1
sol(1)=eplé
return
end if
end
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APPENDIX D: SUBROUTINE ABCOEF

This Appendix contains the listing of the subroutine ABCOEF. The consistency
self-checking procedure has been implemented to determine the correct method to

evaluate the A; and B; coefficients.
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subroutine abcoef(zero,m)

c.t.*'

0O 06 060 0 0 o0 0 6 0 o

For each mode m, this suboutine calculates A-B coefficients in
all layers for combining two linearly independent solutions of
Stokes' equation to form the height gain function:

height gain=exp(bcoefx(l,m))*(k1*exp(acoefx(l,m))+k2)

where k1 and k2 are two independent solutions to Stokes'®
equation. In the top layer (i.e. nzlayr) the height gain is:

height gain=exp(bcoefx(l,m))*h2

c where h2 is a solution to the Stokes' equation associated
c with outgoing energy flow. Here k1 and k2 are proportional
c to the k1 and k2 used by Marcus and the h2 is proportional
c to a modified Hanktie function of order 1/3.
c inputs...
c zero-an eigenvalue in q11 space
c outputs...
c acoefx-two dimensional array of complex exponents
c coefficients used to combine two linearly
c independent solutions of stokes' equation
c bcoefx-two dimensional array of complex exponents
[ coefficients used for normalizing the height gains
c note: acoefx and bcoefx are passed by the
common block /pap2/

c subroutines called...

xcdai
c xcadd
c common block areas...
c coml
c com2
¢ papi
c pap2
c..ttt

implicit reat*8(a-h,o-2)
complex*16 acoefx,bcoefx,cqij,h2xql,dh2xql, h2xq2,dh2xq2, kixql,
$ dkixql, kIxq2,dk1xq2,k2xql,dk2xql, k2xq2,dk2xq2, h2dk 1x,
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51
52
53
54
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57
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59
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62
63
64
65
66
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dh2k 1x,h2dk2x,dh2k2x, umax, denax, wmbx , denbx, int1x, int2x,
hyx, dhyx, k1dhyx,dk1hyx,dk2hyx, k2dhyx, gemma,dgamdq, i ,

koa123, rtsumx, zerc,ql,q2, sumx, surfno,dqi j ,dqi jdz, sang,
drumbx , dhux, dhlx,e13x,cneg,cldqzl,cldqzm, cigama, koawav, tthd,
tacoef,dacoef

+ o » e

parameter(downi=1.d-3,downr=1.d-3/0.4342944819032518d0,

+ pi=3.141592653589793238462643d0,

+ i=(0.0d0,1.0d0), tthd=(2.d0/3.d0)*i,

+ cneg=(0.0d0,3.141592653589793238462643d0), e13x=cneg/3.d0)
ctﬁtti
c mx Layr=maximum number of layers allowed
c mxmode=maximum number of modes allowed

use include file for parameters of

use include file for parameters of
mxlayr max # layers
mxmode max # modes

o 0 0o 0o O o0

$include: ‘mlaparm.inc*

wxa4* Begin {isting of: mlaparm.inc

include file to define the
maximum # of layers (mxiayr)
maximum # of modes (mxmode)

0o 0 0 o o

parameter (mxtayr=35 )
parameter (mxmode=127)

wantt End listing of: mlaparm.inc

c

c

c*it*t

c acoefx-two dimensional complex array used for combining two

c independent solutions to stokes' equation

c bcoefx-two dimensional complex array used for normalizing height
c gain

c cqij-two dimensional array containing coefficients for evaluating
c qij in terms of q11

c dqi j-array containing coefficients for evaluating qij in terms of
c ql1

c dqi jdz-array containing derivatives of qi(z) in the different

c layers

c zi-array containing input hesights for the modified refractivity
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82 dimension acoefx(mxlayr,mxmode),

83 $ beoefx(mxlayr,mxmode),

84 $ dqi j(mxlayr),cqi j(mxlayr,2),dqi jdz(mxlayr),zi(mxlayr+1)
as c*tiﬁt

86

87 common /com1/freq,waveno, sqng

88 common /com2/cqij,dqij,dqijdz,nzlayr
89 common /papl/nrmode, koa123, surfno,z2i
90 common /pap2/acoefx,bcoefx

91

92 c.titt

c check for single layer

set a complex variable koawavs-i*koa123/(waveno*waveno) to
avoid repeating computations

g8

98 koawav=- i*koa123/(waveno*waveno)

99

100 if(nzlayr .eq. 1)then

101 ql=cqij(1,1)+zero*dqgi j(1)

102 call surf(ql,gamma,dgamdq)

103 call xcdai(-ql,k2xql,dk2xql,kixql,dkixql, h2xql,dh2xql)
104 dh2xqi=dh2xq1+e13x

105 int1x=cdlog(koawav*dgamdq-q1/-iqi jdz(1))+2.0d0*h2xq1
106 int2x=2.0d0*dh2xq1-cdlog(-dqi jdz(1))

107 call xcadd(sumx, int1x,int2x)

108 rtsumx=0.5d0*sumx

109 bcoefx(1,m)=-rtsumx

110 return

11 end if

112

113 cldqzl=cdlog(-dqi jdz(1))

114

115 ¢ if | equals one then initialize cunulants and caculate a's and

116 ¢ b's in bottom layer using ground boundary conditions.
117

118 qi=cqij(1,1)+zero*dqij(1)

119 call xcdai(-ql,k2xql,dkexql,kixql,dkixql, h2xql,dhexql)
120 dk2xqlzdk2xqi+cneg

121 dk1xql=dk1xq1-e13x

122 call surf(ql,gamma,dgamdq)

123 cigama=cdlog(i*gamma)

124 call xcadd(numax,cldqzl-cneg+dk2xql,cigame+cneg+kdxnql)
125 call xcadd(denax,cigama+kixql,cldqzl+dkixql)

126 acoefx(1,m)=numax-denax
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128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171

call xcadd(denbx, k2xql,acoefx(1,m)+kixql)
becoefx(1,m)=-denbx

calculate contributions to normalizing integrals.

call xcadd(hyx, k2xql,acoefx(1,m)+kixql)
hyx=bcoefx(1,m)+hyx

call xcadd(dhyx,dk2xql,acoefx(1,m)+dkixqt)
dhyxz=bcoefx(1,m)+dhyx
int1x=cdlog(koawav*dgamdq-ql/dqi jdz(1))+2.0d0*hyx
int2x=2,0d0*dhyx-cldqz!

call xcadd(sumx, int1x,int2x)

do 9010 l=2,nzlayr-1

imi=t-1

cldqzl=cdlog(-dqi jdz(l))

cldqzm=cdlog(dqi jdz({m1))

ql=cqij(l,1)+zero*dqij(l)

call xcdai(-qt,k2xql,dk2xql, k1xql,dkixql, h2xql,dhexql)
dk2xql=dk2xql+cneg

dk1xqi=dk1xqi-e13x

q2=cqi j(im1,2)+zero*dqi j(im1)

call xcdai(-q2,k2xq2,dk2xq2,k1xq2,dk1xq2, h2xq2,dh2xq2)
dk2xq2=dk2xq2+cneg

dk1xq2=dk 1xq2-e13x

call xcadd(hyx, k2xq2,acoefx(lml,m)+k1xq2)

call xcadd(dhyx,dk2xq2,acoefx(im1,m)+dk1xq2)
k1dhyx=k1xq1+dhyx

dk Thyx=dk 1xqt+hyx

dk2hyx=dk2xql+hyx

k2dhyx=k2xq1+dhyx

call xcadd(denax,cldqzm+kidhyx,cldqzl+dkihyx)

call xcadd(numax,cldqzl-cneg+dk2hyx, cldgzm+cneg+k2dhyx)
acoefx(l,m)=numax-denax

call xcadd(denbx,k2xql,acoefx(l,m)+k1xql)
numbx=bcoefx(tm1,m)+hyx

dnumbx=bcoefx(lm1,m)+dhyx

beoefx(l,m)=numbx-denbx

calculate contribution to normalizing integrals.

intix=cdlog(-q1/dqi jdz{l)+q2/dq) jdz{im1))+2.0d0*numbx
call xcadd(sumx,sumx,int1x)

call xcadd(dhux,dk2xql,acoefx(l,m)+dk1xql)
dhux=bcoefx(|,m)+dhux
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173
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176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
21
212
213
214
215
216

9010

[

c

c

9000

int 1x=2.0d0*dnumbx - ¢ l dgzm
int2x=2.0d0*dhux-cldqzl
call xcadd(sumx,sumx,intix)
call xcadd(sumx,sumx, int2x)

continue

if | equals nzlayer, calculate a's and b's using outgoing
wave in tap layer.

nzmiznzlayr-1

qi=cqi j(nzlayr, 1)+zero*dqi j(nzlayr)

call xcdai(-q1,k2xql,dk2xqt,kixql,dkixql, h2xql,dh2xql)
dh2xqt=dh2xql+e13x

q2=cqi j(nzm1,2)+zero*dqi j(nzm1)

call xcdai(-q2,k2xq2,dk2xq2, k1xq2,dk1xq2,h2xq2,dh2xq2)
dk2xq2=dk2xq2+cneg

dk1xq2=dk 1xq2-e13x

call xcadd(hyx,k2xq2,acoefx(nzml,m)+k1xq2)
numbx=bcoefx(nzlayr-1,m)+hyx
beoefx(nzlayr,m)=numbx-h2xql

calculate contribution to cumulants.

intix=cdlog(-ql/dqi jdz(nzlayr)+q2/dqi jdz(nzm1))+
2.0d0*numbx

call xcadd(sumx,sumx,int1x)

call xcadd(dhyx,dk2xq2,acoefx(nzml,m)+dk1xqe)
dnumbx=bcoefx(nzm1,m)+dhyx
int1x=2.0d0*dnumbx-cdlog(dqi jdz(nzm1))

call xcadd(sumx,sumx,intix)
dhux=bcoefx(nzlayr,m)+dh2xql
int2x=2.0d0*dhux-cdlog(-aqi jdz(nzlayr))

call xcadd(sumx,sumx, int2x)

renormalize b's so that height gain integral equals unity.

rtsumx=.5d0*sumx

do 9000 Ll=1,nzlayr
becoefx(ll,m)=bcoefx(it, m)-rtsumx

continue

ciittiti*'titiﬁ*t.t..ttt.ttti.'t.ﬁ't'lt.tti.t't'....i.t.ii'*tit.
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250
251
252
253
254
255
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260
261

t=nzlayr
imi=l-1

cldqzm=cdlog(dqi jdz(lm1))
cldqzl=cdlog(-dqijdz(1))

ciii**

c
c

c****i

0o 0 0 0

calculate q and associated quantities at bottom of layer |

qi=cqij(l,1)+zero*dqi j(l)
call xcdai(-q1,k2xq1,dk2xql, k1xql,dk1xql, h2xql,dhexql)
dh2xqi=dh2xql+e13x

q2=cqi j(lm1,2)+zero*dqi j(iml)

call xcdai(-q2,k2xq2,dk2xq2,k1xq2,dk1xq2, h2xq2,dh2xq2)
dk2xq2=dk2xq2+cneg

dki1xq2=dk 1xq2-e13x

Caculate acoefx(lm?,m),bcoefx(lmi,m)
and cumulants using outgoing wave in nzlayr

dh2k 1x=dh2xq1+k1xq2
h2dk1x=h2xqi+dk1xq2
h2dk2x=h2xq1+dk2xq2
dh2k2x=dh2xql+k2xq2

catl xcadd(denax,cldqzl-cneg+dh2kix,cldqzm+cneg+h2dkix)
call xcadd(numax,cldqzmth2dk2x,cldgzl+dh2k2x)

1f in the nzlayr-1 layer the magnitudes of A coefficients from
integration up and down differ by less than 0.02 d8 and their
phases differ by less than 0.001pi, the A and B coefficients
obtained from integration up will be accepted.

tacoef=numax-denax
dacoef=tacoef-acoefx(Im1,m)
difr=dabs(dreal (dacoef))

if (difr .lt. downr) then

difi=dimag(dacoef)/pi
difizdabs(difi-dnint(difi/2.d0)*2.d0)
if (difi .lt. downi) return

end if

acoefx(lml, m)=st.coef
catl xcadd(denbx,k2xq2,acoefx(lmi, m)+k1xq2)
bcoefx(im1,m)=h2xqt-denbx




262
263
264
265
266
267
268
269
270
2n
2
273
274
275
276
rig4
278
2m
280
281
282
283
284
285
286
287
288
289

291
292
293
294
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300
301
302
303
304
305

[

[

Piadadaded ]
c

c
[

calculate contributions to cumulants

sumx=cdlog(-ql1/dqi jdz(1)+q2/dqi jdz(Im1))+2.0d0*h2xql
call xcadd(dhlx,dk2xq2,acoefx(iml,m)+dk1xq2)
dhix=bcoefx{iml, m)+dhlx

int1x=2.0d0*dh2xql-cldqzl

call xcadd(inttx,sumx,int1x)
int2x=2.0d0*dhlx-cldqzm

call xcadd(sumx,int1x, int2x)

do 9030 l=nzlayr-1,2,-1
tmt=L-1

cldqzl=cdlog(-dqi jdz(1))
cldgzm=cdlog(dqi jdz(Ilm1))

calculate q and associated quantities at bottom of layer |

ql=cqi j(l,1)+zero*dqij(l)

call xcdai(-q1,k2xql,dk2xql,kixql,dkixql,h2xql,dh2xql)
dk2xql=dk2xql+cneg

dk1xq1=dk1xq1-e13x

q2=cqi j(lml, 2)+zero*dqij((ml)

call xcdai(-q2,k2xq2,dk2xq2, kixq2,dk1xq2, h2xq2,dh2xq2)
dk2xg2=dk2xq2+cneg

dk1xq2=dk1xq2-e13x

dh2xq2=dh2xq2+e13x

Calculate acoefx(im1,m),bcoefx(lml,m) and cumulants
using continuity relations in terms of the linearly
independent functions k1 and k2

call xcadd(hyx,k2xql,acoefx(l,m)+kixql)
call xcadd(dhyx,dk2xql,acoefx(l, m)+dkixqi)
k1dhyx=k 1xq2+dhyx

dk1hyx=dk 1xq2+hyx

dk2hyx=dk2xq2+hyx

k2dhyx=k2xq2+dhyx

call xcadd(denax,cldqgz!-cneg+kidhyx,cldqzmtcneg+dklhyx)
call xcadd(numax,cldgqzm+dk2hyx,cldqzl+k2dhyx)
acoefx(iml,m)=numax-denax

call xcadd(denbx,k2xq2,scoefx(ilml,m)+k1xq2)
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333
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c

9030

chkkkk

c
[+

c

9020

numbxsbcoefx(l,m)+hyx
dnumbx=bcoefx(,m)+dhyx
bcoefx(lm1,m)=numbx-denbx

calculate contributions to cumulants.

int1x=cdlog(-q1/dqi jdz(1)+q2/dqi jdz(lm1))+2.0d0*numbx
call xcadd(sumx,sumx,intix)

call xcadd(dhlx,dk2xq2,acoefx(lml,m)+dkixq2)
dhix=bcoefx(lm1,m)+dhlx

int1x=2.0d0*dnumbx-cldqzl

int2x=2.0d0*chix-cldqzm

call xcadd(sumx,sumx,int1x)

call xcadd(sumx,sumx, int2x)

continue

if | equal to one calculate ground
contribution to cumulants and renormalize bcoefx's

1=1

qt=cqij(l,1)+zero*dqij(l)

call xcdai(-q1,k2xql,dk2xql, kixql,dk1xql, h2xql,dhexql)
dk2xq1=dkexqi+cneg

dk1xq1=dk1xqt-e13x

call xcadd(hyx,k2xq1,acoefx(l,m)+kixql)

call xcadd(dhyx,dk2xql,acoefx(l,m)+dkixql)

call surf(ql,gamma,dgamdq)

numbx=bcoefx(l,m)+hyx

dnumbx=bcoefx(l,m)+dhyx

int1x=cdl og(koawav*dgamdq-q1/dqi jdz(|))+2.0d0*numbx
int2x=2.0d0*dnumbx-cdlog(-dqi jdz(1))

call xcadd(sumx,sumx, int1x)

call xcadd(sumx,sumx,int2x)

renormalize b's so that height gain integrals equal unity.
rtsumx=.5d0*sumx
do 9020 (l=1,nzlayr-1

beoefx(li,m)=bcoefx(ll,m)-rtsumx
continue
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beoefx{nzlayr,m)=-rtsumx

return
end
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